Effects of Killing Methods on Lipid Oxidation, Colour and Microbial Load of Black Soldier Fly (Hermetia illucens) Larvae


  • Publication date : 2019-04-21

Reference

Larouche, J., Deschamps, M.-H., Saucier, L., Lebeuf, Y., Doyen, A., & Vandenberg, G. W. (2019). Effects of Killing Methods on Lipid Oxidation, Colour and Microbial Load of Black Soldier Fly (Hermetia illucens) Larvae. Animals, 9(4), 182. https://doi.org/10.3390/ani9040182

Keywords

Mouche soldat noire Microbiologie

Abstract

Black soldier fly (BSF) larvae represent a promising alternative ingredient for animal feed. Post-production processing can, however, affect their quality. This project aimed to optimize larval killing by comparing the effects on the nutritional and microbiological quality of 10 methods, i.e., blanching (B = 40 s), desiccation (D = 60 °C, 30 min), freezing (F20 = −20 °C, 1 h; F40 = −40 °C, 1 h; N = liquid nitrogen, 40 s), high hydrostatic pressure (HHP = 3 min, 600 MPa), grinding (G = 2 min) and asphyxiation (CO2 = 120 h; N2 = 144 h; vacuum conditioning, V = 120 h). Some methods affected the pH (B, asphyxiation), total moisture (B, asphyxiation and D) and ash contents (B, p < 0.001). The lipid content (asphyxiation) and their oxidation levels (B, asphyxiation and D) were also affected (p < 0.001). Killing methods altered the larvae colour during freeze-drying and in the final product. Blanching appears to be the most appropriate strategy since it minimizes lipid oxidation (primary = 4.6 ± 0.7 mg cumen hydroperoxide (CHP) equivalents/kg; secondary = 1.0 ± 0.1 mg malondialdehyde/kg), reduces microbial contamination and initiates dehydration (water content = 78.1 ± 1.0%). We propose herein, an optimized protocol to kill BSF that meet the Canadian regulatory requirements of the insect production and processing industry.


Back